管理培訓(xùn)
管理培訓(xùn)_*_ |信匯中正領(lǐng)導(dǎo)力

怎樣給機(jī)器人來場(chǎng)工作面試

當(dāng)前位置:
怎樣給機(jī)器人來場(chǎng)工作面試

在全世界,聰明而又已可半自主的機(jī)器人和機(jī)器正在各種工作場(chǎng)所取代人類。它們學(xué)習(xí)快、工作勤勞,而且肯定比較少抱怨。智能科技正在以愈來愈少的成本、帶來愈來愈多的價(jià)值。

然而,這種「比人類更優(yōu)秀」卻也會(huì)帶來管理上的挑戰(zhàn)。如果這些演算法作業(yè)的績(jī)效不如預(yù)期,情況會(huì)如何?如果機(jī)器的「機(jī)器學(xué)習(xí)」成績(jī)不好,有誰(shuí)能重新訓(xùn)練它們?如果先進(jìn)機(jī)器人(像是富達(dá)投顧的機(jī)器人理財(cái)顧問、Uber的自動(dòng)車、IBM超級(jí)電腦Watson的醫(yī)療診斷)的行為模式會(huì)讓顧客感到不舒服,該怎樣讓它們得到意見回饋、從而加以改善?究竟該由誰(shuí)或是什么來負(fù)責(zé)這件事?最近微軟聊天機(jī)器人Tay的慘劇,正是沒把機(jī)器學(xué)習(xí)「訓(xùn)練」看得夠認(rèn)真的下場(chǎng)。

就算是聰明而又努力的機(jī)器,也像某些懶惰而有害的人類,需要對(duì)它們進(jìn)行工作檢討。好的管理者都知道,想在未來?yè)碛猩a(chǎn)力和顧客忠誠(chéng)度,除了得激勵(lì)員工,也得激勵(lì)機(jī)器、并加以管理。

說白一點(diǎn),管理者如果無法讓機(jī)器人把工作做得更好,到頭來可能連自己的工作也難保。在21世紀(jì),一項(xiàng)新的必備領(lǐng)導(dǎo)能力可能就在于能否讓智能型的機(jī)器充分發(fā)揮潛力。

《人工智能時(shí)代》(Humans Need not Apply)的作者杰瑞?卡普蘭(Jerry Kaplan)認(rèn)為:「這是智能型系統(tǒng)設(shè)計(jì)的核心。就長(zhǎng)期的歷史進(jìn)程看來,自然的發(fā)展是走向『自動(dòng)化』,而不是要重新創(chuàng)造人類的心靈和情境」。

卡普蘭自己曾在硅谷多次創(chuàng)業(yè)投資,他斷然表示,要把智能型機(jī)器人性化或是「管理化」,都是「過度而無用的擬人化」。

他還說:「你可沒辦法叫那些機(jī)器坐下聽訓(xùn),讓它們感覺自己做了壞事?!?/p>

然而卡普蘭也承認(rèn),要面對(duì)顧客的機(jī)器學(xué)習(xí)系統(tǒng)已經(jīng)在行為中整合愈來愈多的情緒因子,而不再只做演算上的最佳化。舉例來說,搭Uber自動(dòng)車的時(shí)候,乘客也可能像搭一般車一樣,希望車可以開快一點(diǎn)、猛一些。如果有別的車硬切,他們也會(huì)希望可以「教訓(xùn)」對(duì)方一下。

這時(shí),如果自動(dòng)車不能對(duì)乘客的要求做出適當(dāng)回應(yīng)(就像一般司機(jī)如果沒有回應(yīng)),得到的評(píng)分就會(huì)較低。究竟,自動(dòng)車如果要替乘客趕飛機(jī),該能開得多猛?就顧客服務(wù)而言,自動(dòng)車能否回應(yīng)需求而開得「猛」一點(diǎn),就像是一般司機(jī)能不能開猛一點(diǎn)同樣重要。只要顧客的需求還在合法、合情、安全的范圍內(nèi),智能型的機(jī)器就該像有智能的人類一樣回應(yīng)需求。

卡內(nèi)基美隆大學(xué)(Carnegie Mellon University)E. Fredkin講座教授暨機(jī)器學(xué)習(xí)主席湯姆?米契爾(Tom Mitchell)就問:「為什么對(duì)待機(jī)器的方式要不同?」米契爾的系所已有幾位重要成員遭到Uber挖角,而他認(rèn)為「監(jiān)管」對(duì)于機(jī)器學(xué)習(xí)系統(tǒng)的重要性并不下于對(duì)人類的重要性。他相信,企業(yè)設(shè)計(jì)機(jī)器人的工作模式時(shí),也必須考量持續(xù)的績(jī)效考核及改進(jìn)。

他補(bǔ)充道:「當(dāng)然,該怎么做現(xiàn)在還不明朗。但我們都知道勢(shì)在必行,才能提升這些科技的接受度及采用率……必須有適當(dāng)介面,讓監(jiān)管及改進(jìn)更簡(jiǎn)單、更安全?!?/p>

人類員工的當(dāng)責(zé)和效率有關(guān)鍵績(jī)效指標(biāo)(KPI)加以評(píng)估,而慢慢地,機(jī)器人和機(jī)器學(xué)習(xí)系統(tǒng)也必須面對(duì)同樣的KPI。如果自動(dòng)化的聊天機(jī)器人并未提升客服中心的顧客滿意度,就該重新設(shè)計(jì)/重新訓(xùn)練。客服中心的經(jīng)理,究竟該找最棒的客服代表、還是該找科技好手來處理這個(gè)問題?在快速成長(zhǎng)的「剛退休」市場(chǎng)區(qū)隔中,機(jī)器人理財(cái)顧問所提的建議還無法讓人怦然心動(dòng)。究竟在「創(chuàng)造興奮」和經(jīng)過風(fēng)險(xiǎn)調(diào)整的投報(bào)率之間,最佳的權(quán)衡為何?機(jī)器人理財(cái)顧問是否該和真人理財(cái)顧問合作得更密切?

過去人類企業(yè)遇過的領(lǐng)導(dǎo)、管理、激勵(lì)問題,現(xiàn)在也落到了全球連線成網(wǎng)的機(jī)器企業(yè)上:360度績(jī)效評(píng)估是否能帶來新的見解及效率?智能型機(jī)器該如何設(shè)計(jì)或訓(xùn)練,才能提供新的見解或改善?這些機(jī)器是否也該使用新的網(wǎng)絡(luò)(像是物聯(lián)網(wǎng)?)或是新的資料集,以確???jī)效能持續(xù)提升?

正如員工滿意度與顧客滿意度高度相關(guān),企業(yè)如果使用智能型機(jī)器人及高績(jī)效機(jī)器學(xué)習(xí)設(shè)備,就必須密切觀察演算效率及顧客價(jià)值之間的相關(guān)性。

再接下來的挑戰(zhàn),將在于這些相關(guān)性的定義和判斷,有多少是由人類主管決定,又有多少是由高AIQ(Artificial Intelligence Quotient,人工智商)支援系統(tǒng)來決定。

卡普蘭觀察道:「對(duì)于社會(huì)規(guī)范及行為,現(xiàn)在尚無完善的運(yùn)算理論」,因此,想讓聰明的人類與更聰明的機(jī)器共存而合作,起步并非易事。但無疑,企業(yè)未來必然會(huì)運(yùn)用機(jī)器產(chǎn)生的資料及預(yù)測(cè)分析,讓產(chǎn)生這些資訊的機(jī)器更為改善、日益聰明。

問個(gè)對(duì)未來企業(yè)最挑釁的問題,也就是未來企業(yè)要得到更佳成果、更高價(jià)值的時(shí)候,究竟該做績(jī)效評(píng)估的對(duì)象會(huì)是最佳的員工、或是最佳的機(jī)器了。

成就高成效,實(shí)現(xiàn)管理能力快速提升,12Reads系列管理培訓(xùn)教材限時(shí)特惠! 立即購(gòu)買 PURCHASE NOW